skip to main content


Search for: All records

Creators/Authors contains: "Morsy, Mustafa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In a search for efficient fungal endophytes that can promote crop production and/or increase crop tolerance to abiotic stress, we isolated and tested various species harbored by wild plants. Sixty-seven endophytic fungal isolates were obtained from drought stressed, poor soil habitats, and inland high salt areas. We extensively tested the roles of Ampelomyces sp. and Penicillium sp. isolates in improving tomato growth and yield. Under greenhouse and field trails, Ampelomyces sp. and Penicillium sp. endophytes proved effective in conferring positive benefits to tomatoes placed under stress as well as under normal growing conditions. Ampelomyces sp. conferred tolerance to tomatoes placed under drought stress in addition to enhancing overall plant growth and fruit yield in comparison to non-symbiotic plants under drought stress. Penicillium sp. conferred tolerance to tomatoes placed under 300 mM salinity stress in addition to enhancing root biomass in comparison to non-symbiotic plants. Both endophytes proved efficient in enhancing plant growth, stress tolerance, recovery, and fruit yield under optimal experimental conditions in comparison to non-symbiotic plants. Field testing of tomato yield showed increased yield of symbiotic tomatoes compared to non-symbiotic ones. This data suggests that both Ampelomyces sp. and Penicillium sp. share a promising potential for improving future agricultural production, particularly with the projected changes in climate in the future. 
    more » « less
  2. Abstract

    ArabidopsisVIRE2-INTERACTINGPROTEIN2 (VIP2) was previously described as a protein with a NOT domain, and Arabidopsisvip2mutants are recalcitrant toAgrobacterium-mediated root transformation. Here we show that VIP2 is a transcription regulator and the C-terminal NOT2 domain of VIP2 interacts with VirE2. Interestingly,AtVIP2overexpressor lines in Arabidopsis did not show an improvement inAgrobacterium-mediated stable root transformation, but the transcriptome analysis identified 1,634 differentially expressed genes compared to wild-type. These differentially expressed genes belonged to various functional categories such as membrane proteins, circadian rhythm, signaling, response to stimulus, regulation of plant hypersensitive response, sequence-specific DNA binding transcription factor activity and transcription regulatory region binding. In addition to regulating genes involved inAgrobacterium-mediated plant transformation,AtVIP2overexpressor line showed differential expression of genes involved in abiotic stresses. The majority of the genes involved in abscisic acid (ABA) response pathway, containing the Abscisic Acid Responsive Element (ABRE) element within their promoters, were down-regulated inAtVIP2overexpressor lines. Consistent with this observation,AtVIP2overexpressor lines were more susceptible to ABA and other abiotic stresses. Based on the above findings, we hypothesize that VIP2 not only plays a role inAgrobacterium-mediated plant transformation but also acts as a general transcriptional regulator in plants.

     
    more » « less
  3. Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. 
    more » « less
  4. null (Ed.)